CS650 30 cm Soil Water Content Reflectometer
Innovative
More accurate in soils with high bulk electrical conductivity
weather applications water applications energy applications gas flux & turbulence applications infrastructure applications soil applications

Overview

The CS650 is a multiparameter smart sensor that uses innovative techniques to monitor soil volumetric water content, bulk electrical conductivity, and temperature. It outputs an SDI-12 signal that many of our dataloggers can measure.

Read More

Benefits and Features

  • More accurate water content measurements in soils with bulk EC up to 3 dS m-1 without performing a soil-specific calibration
  • Larger sample volume reduces error
  • Measurement corrected for effects of soil texture and electrical conductivity
  • Estimates soil-water content for a wide range of mineral soils
  • Versatile sensor—measures dielectric permittivity, bulk electrical conductivity (EC), and soil temperature

Images

Detailed Description

The CS650 consists of two 30-cm-long stainless steel rods connected to a printed circuit board. The circuit board is encapsulated in epoxy and a shielded cable is attached to the circuit board for datalogger connection.

The CS650 measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.

Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This loss-effect correction allows accurate water content measurements in soils with bulk EC ≤3 dS m-1 without performing a soil specific calibration.

Soil bulk electrical conductivity is also calculated from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content. Temperature measurement in other orientations will be that of the region near the rod entrance into the epoxy body.

 

Specifications

Measurements Made Soil electrical conductivity (EC), relative dielectric permittivity, volumetric water content, soil temperature
Required Equipment Measurement system
Soil Suitability Long rods with large sensing volume (> 6 L) are suitable for soils with low to moderate electrical conductivity.
Rods Not replaceable
Sensors Not interchangeable
Sensing Volume 7800 cm3 (~7.5 cm radius around each probe rod and 4.5 cm beyond the end of the rods)
Electromagnetic CE compliant
Meets EN61326 requirements for protection against electrostatic discharge and surge.
Operating Temperature Range -50° to +70°C
Sensor Output SDI-12; serial RS-232
Warm-up Time 3 s
Measurement Time 3 ms to measure; 600 ms to complete SDI-12 command
Power Supply Requirements 6 to 18 Vdc (Must be able to supply 45 mA @ 12 Vdc.)
Maximum Cable Length 610 m (2000 ft) combined length for up to 25 sensors connected to the same datalogger control port
Rod Spacing 32 mm (1.3 in.)
Ingress Protection Rating IP68
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 300 mm (11.8 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Probe Weight 280 g (9.9 oz) without cable

Current Drain

Active (3 ms)
  • 45 mA typical (@ 12 Vdc)
  • 80 mA (@ 6 Vdc)
  • 35 mA (@ 18 Vdc)
Quiescent 135 µA typical (@ 12 Vdc)

Electrical Conductivity

Range for Solution EC 0 to 3 dS/m
Range for Bulk EC 0 to 3 dS/m
Accuracy ±(5% of reading + 0.05 dS/m)
Precision 0.5% of BEC

Relative Dielectric Permittivity

Range 1 to 81
Accuracy
  • ±(2% of reading + 0.6) from 1 to 40 for solution EC ≤ 3 dS/m
  • ±1.4 (from 40 to 81 for solution EC ≤1 dS/m)
Precision < 0.02

Volumetric Water Content

Range 0 to 100% (with M4 command)
Water Content Accuracy
  • ±1% (with soil-specific calibration)
  • ±3% (typical with factory VWC model) where solution EC < 3 dS/m
Precision < 0.05%

Soil Temperature

Range -50° to +70°C
Resolution 0.001°C
Accuracy
  • ±0.1°C (for typical soil temperatures [0 to 40°C] when probe body is buried in soil)
  • ±0.5°C (for full temperature range)
Precision ±0.02°C

Compatibility

RF Considerations

External RF Sources

External RF sources can affect the probe’s operation. Therefore, the probe should be located away from significant sources of RF such as ac power lines and motors.

Interprobe Interference

Multiple CS650 sensors can be installed within 4 inches of each other when using the standard datalogger SDI-12 “M” command. The SDI-12 “M” command allows only one probe to be enabled at a time.

Installation Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G were not used. It makes pilot holes into which the rods of the sensors can then be inserted.

Datalogger Considerations

Compatible Contemporary Dataloggers

CR200(X) Series CR800/CR850 CR1000 CR3000 CR9000X

Compatible Retired Dataloggers

CR500 CR510 CR10 CR10X 21X CR23X CR9000 CR5000 CR7X

Downloads

CS650 / CS655 Firmware v.2 (429 KB) 12-02-2015

Current CS650 and CS655 firmware. 

Note:  The Device Configuration Utility and A200 Sensor-to-PC Interface are required to upload the included firmware to the sensor.

View Update History

Frequently Asked Questions

Number of FAQs related to CS650: 54

Expand AllCollapse All

  1. Campbell Scientific strongly discourages shortening the sensor’s rods. The electronics in the sensor head have been optimized to work with the 30 cm long rods. Shortening these rods will change the period average. Consequently, the equations in the firmware will become invalid and give inaccurate readings.

  2. Yes. There is surge protection built into the sensor electronics. The sensor survives a surge of 2 kV at 42 ohm line-to-ground on digital I/O and 2 kV at 12 ohm line-to-ground on power. It also survives a surge of 2 kV at 2 ohm line-to-ground on the rods.

    If additional surge protection is required, consider using the SVP100 Surge Voltage Protector DIN Rail with Mounting Hardware

  3. Damage to the CS650 or the CS655 electronics or rods cannot be repaired because these components are potted in epoxy. Cable damage, on the other hand, may possibly be repaired. For more information, refer to the Repair and Calibration page.

  4. The CS650 and CS655 are warranted by Campbell Scientific to be free from defects in materials and workmanship under normal use and service for 12 months from the date of shipment. For further details, see the “Warranty” section of the CS650/CS655 manual.

  5. The electrical conductivity (EC) of sea water is approximately 48 dS/m. The CS650 can measure permittivity in water with EC between 0 and 3 dS/m. EC readings become extremely unstable at conductivities higher than 3 dS/m and are reported as NAN or 9999999. Because EC is part of the permittivity equation, an EC reading of NAN leads to a permittivity reading of NAN as well. Thus, the CS650 cannot provide good readings in sea water.

    With regard to sea ice, the electrical conductivity drops significantly when sea water freezes and the permittivity changes from approximately 88 down to approximately 4, as the water changes from a liquid to a solid state. With both EC and permittivity falling to levels that are within the CS650 measurement range, the sensor is expected to give valid readings in sea ice. The sensor is rugged and can withstand the cold temperatures. However, as the ice melts, there will be a point at which the electrical conductivity becomes too high to acquire a valid reading for either permittivity or electrical conductivity.

  6. A thermistor is encased in the epoxy head of the sensor next to one of the stainless-steel rods. This provides an accurate point measurement of temperature at the depth where that portion of the sensor head is in contact with the soil. This is why a horizontal placement is the recommended orientation of the CS650 or CS655. The temperature measurement is not averaged over the length of the sensor rods.

  7. Yes, but the pots would have to be large. The CS650 and CS655 can detect water as far away as 10 cm (4 in.) from the rods. If the pot has a diameter smaller than 20 cm (8 in.), the sensor could potentially detect the air around the pot, which would underestimate the water content. In addition, potting soil is typically high in organic matter and clay, causing the probable need for a soil-specific calibration. 

  8. Yes. Keeping the sensor rods parallel during installation is especially difficult in gravel, but it can be done. Gravel has large pore spaces that drain quickly, so the water content readings will likely show rapid changes between saturation and very dry. If small changes of water content at the dry end are of interest, a soil-specific calibration may need to be performed to convert period average directly to volumetric water content.

  9. No. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. When liquid water freezes, its dielectric permittivity drops to 3.8, essentially making it look like soil particles to the sensor. A CS650 or CS655 installed in soil that freezes would show a rapid decline in its volumetric water content reading with corresponding temperature readings that are below 0°C. As the soil freezes down below the measurement range of the sensor, the water content values would stop changing and remain steady for as long as the soil remains frozen.  

  10. No. The equation used to determine volumetric water content in the firmware for the CS650 and the CS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not necessarily for artificial soils that typically have high organic matter content and high clay content. In this type of soil, the standard equations in the firmware will overestimate water content.

    When using a CS650 or a CS655 in artificial soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.


Articles and Press Releases